Let R be a ring -- it is well-known that the category R-mod of (left) R-modules does not determine R. For example, the functor −⊗Rn:R-mod→Matn×n(R)-mod
That said, there is one additional piece of data that lets us recover the ring R from the category R-mod. Namely, if we let F be the functor F:R-mod→Z-mod
Let us consider a special case of this situation. Suppose R is a topological ring, complete with respect to some two-sided maximal ideal m, and suppose that R/m=k is a (commutative) field. Then any continuous R-module is a (possibly infinite) iterated extension of k. A little exercise shows that if S is another topological ring, complete with respect to m′ and with commutative residue field k′, then a (continuous) functor G:R-mod→S-mod
In some of my work on fundamental groups, I've run into the following situation, which can be thought of as an "approximate" version of the remarks in the previous paragraph. Suppose that R,S are complete with respect to some ideals I,I′ which are not maximal; rather, R/I≃S/I′ are local rings whose only non-trivial ideal is the nilradical (i.e. they are direct limits of Artinian local rings). Moreover, we have a functor G:R-mod→S-mod
Actually, this is not exactly the situation I am in, but a toy version which is close enough to the real thing. This kind of "approximate" Tannaka duality seems to arise naturally from certain constructions in integral p-adic Hodge theory; if someone else has thought about it, I would love to hear about it!